47 research outputs found

    Analysis of the subthreshold current of pocket or halo-implanted nMOSFETs

    Get PDF
    In this work, we analyzed the subthreshold current (I/sub D/) of pocket implanted MOSFETs using extensive device simulations and experimental data. We present an analytical model for the subthreshold current applicable for any type of FET and show that the subthreshold current of nMOSFETs, which is mainly due to diffusion, is determined by the internal two-dimensional hole distribution across the device. This hole distribution is affected by the electric potential of the gate and the doping concentration in the channel. The results obtained allow accurate modelling of the subthreshold current of future generation MOS devices

    An Initial study on The Reliability of Power Semiconductor Devices

    Get PDF
    An initial literature study combined with some basic comparative simulations has been performed on different electricfield modulation techniques and the subsequent reliability issues are reported for power semiconductor devices. An explanation of the most important power device metrics such as the offstate breakdown (BV) and specific on-resistance (RON) will be given, followed by a short overview of some of the electrostatic techniques (fieldplates, RESURF e.g. [1]) used to suppress peak electric fields. Furthermore it will be addressed that the high current operation of these devices results in shifting electric field peaks (Kirk effect [2], [3]) and as such different avalanche behavior, resulting in (gate oxide) reliability issues unlike those of conventional CMOS

    Modelling of bulk acoustic wave resonators for microwave filters

    Get PDF
    Modelling and development of high Q thin-film bulk acoustic wave (BAW) devices is a topic of research gaining attention due to good selectivity and steep transition band offered by these devices used for cellular applications. A preliminary survey of various modeling approaches of these devices and their validations are presented in this paper. So far two existing one dimensional (1D) models have been investigated and compared. The results obtained from the models show relatively good agreement with experimental data of the FBAR reported in the literature. The prime objective of this project is to investigate novel BAW resonators, to determine the essential physical parameters and to develop physics based model thereof suited for circuit applications

    A design procedure for an acoustic mirror providing dual reflection of longitudinal and shear waves in Solidly Mounted BAW Resonators (SMRs)

    Get PDF
    The quality factor of the traditional Solidly Mounted Resonator (SMR) is limited by substrate losses, as the traditionally employed acoustic mirror reflects longitudinal waves but not shear waves. Modern mirrors do reflect both waves, but design rules for such mirrors have not been published so far. We propose a systematic design procedure derived from optics leading to a novel embodiment for the acoustic mirror which effectively reflects both longitudinal and shear waves. This method can be applied for the acoustic mirror design for any given material combination. An analytical model is presented; its agreement with FEM simulations is good. With the optimized design, we can obtain a minimum transmission for longitudinal and shear waves of −25 dB and −20 dB at resonance frequencies for longitudinal and shear waves, respectively, for various reflector material combinations

    On the Trade-Off Between Quality Factor and Tuning Ratio in Tunable High-Frequency Capacitors

    Get PDF
    A benchmark of tunable and switchable devices at microwave frequencies is presented on the basis of physical limitations to show their potential for reconfigurable cellular applications. Performance limitations are outlined for each given technology focusing on the quality factor (Q) and tuning ratio (eta) as figures of merit. The state of the art in terms of these figures of merit of several tunable and switchable technologies is visualized and discussed. If the performance of these criteria is not met, the application will not be feasible. The quality factor can typically be traded off for tuning ratio. The benchmark of tunable capacitor technologies shows that transistor-switched capacitors, varactor diodes, and ferroelectric varactors perform well at 2 GHz for tuning ratios below 3, with an advantage for GaAs varactor diodes. Planar microelectromechanical capacitive switches have the potential to outperform all other technologies at tuning ratios higher than 8. Capacitors based on tunable dielectrics have the highest miniaturization potential, whereas semiconductor devices benefit from the existing manufacturing infrastructure

    An improved method for determining the inversion layer mobility of electrons in trench MOSFETs

    Get PDF
    For the first time trench sidewall effective electron mobility (/spl mu//sub eff/) values were determined by using the split capacitance-voltage (CV) method for a large range of transversal effective field (E/sub eff/) from 0.1 up to 1.4 MV/cm. The influences of crystal orientation, doping concentration and, for the first time, temperature were investigated. In conclusion, the results show that (1) the split CV method is an accurate method for determining /spl mu//sub eff/(E/sub eff/) data in trench MOSFETs, (2) the {100} /spl mu//sub eff/ data approach published data of planar MOSFETs for high E/sub eff/ and (3) the mobility behavior can be explained with generally accepted scattering models for the entire range of E/sub eff/. The results are important for the optimization of trench power devices

    Fabrication and characterization of the charge-plasma diode

    Get PDF
    We present a new lateral Schottky-based rectifier called the charge-plasma diode realized on ultrathin silicon-oninsulator. The device utilizes the workfunction difference between two metal contacts, palladium and erbium, and the silicon body. We demonstrate that the proposed device provides a low and constant reverse leakage-current density of about 1 fA/μm with ON/OFF current ratios of around 107 at 1-V forward bias and room temperature. In the forward mode, a current swing of 88 mV/dec is obtained, which is reduced to 68 mV/dec by back-gate biasing
    corecore